Tutorial

Inti Logo

« Moving On
 Widget Overview »

Packing Widgets

  1. Theory of Packing Boxes
  2. Details of Boxes
  3. Packing Demonstration Program
  4. Packing Using Tables
  5. Table Packing Example

When creating an application, you'll want to put more than one widget inside a window. Our first helloworld example only used one widget so we could simply use a Gtk::Container::add() call to pack the widget into the window. But when you want to put more than one widget into a window, how do you control where that widget is positioned? This is where packing comes in.


Theory of Packing Boxes

Most packing is done by creating boxes. These are invisible widget containers that we can pack our widgets into which come in two forms, a horizontal box, and a vertical box. When packing widgets into a horizontal box, the objects are inserted horizontally from left to right or right to left depending on the call used. In a vertical box, widgets are packed from top to bottom or vice versa. You may use any combination of boxes inside or beside other boxes to create the desired effect.

The Gtk::Box::pack_start() and Gtk::Box::pack_end() methods are used to place objects inside of these containers. The Gtk::Box::pack_start() method will start at the top and work its way down in a vertical box, and pack left to right in a horizontal box. Gtk::Box::pack_end() will do the opposite, packing from bottom to top in a vertical box, and right to left in a horizontal box. Using these methods allows us to right justify or left justify our widgets and may be mixed in any way to achieve the desired effect. We will use Gtk::Box::pack_start() in most of our examples. An object may be another container or a widget. In fact, many widgets are actually containers themselves, including the button, but we usually only use a label inside a button.

By using these calls, GTK knows where you want to place your widgets so it can do automatic resizing and other nifty things. There are also a number of options as to how your widgets should be packed. As you can imagine, this method gives us a quite a bit of flexibility when placing and creating widgets.


Details of Boxes

Because of this flexibility, packing boxes in Inti can be confusing at first. There are a lot of options, and it's not immediately obvious how they all fit together. In the end, however, there are basically five different styles.

packbox1

Each line contains one horizontal box (hbox) with several buttons. The call to Gtk::Box::pack_start() is shorthand for the call to pack each of the buttons into the hbox. Each of the buttons is packed into the hbox the same way (i.e., same arguments to the Gtk::Box::pack_start() method).

This is the declaration of the Gtk::Box::pack_start() function.

void pack_start(Gtk::Widget& child, bool expand = true, bool fill = true, unsigned int padding = 0);

The first argument is the widget you are packing into the box. The widgets will all be buttons for now, so we'll be packing buttons into boxes.

The expand argument to Gtk::Box::pack_start() and Gtk::Box::pack_end() controls whether the objects are laid out in the box to fill in all the extra space in the box so the box is expanded to fill the area allotted to it (true); or the box is shrunk to just fit the objects (false). The default value is true. Setting expand to false will allow you to do right and left justification of your objects. Otherwise, they will all expand to fit into the box, and the same effect could be achieved by using only one of Gtk::Box::pack_start() or Gtk::Box::pack_end().

The fill argument to the Gtk::Box::pack() methods control whether the extra space is allocated to the objects themselves (true), or as extra padding in the box around these objects (false). The default value is true. It only has an effect if the expand argument is also true.

The constructor for creating a new horizontal box looks like this:

HBox(bool homogeneous = false,int spacing = 0);

and the constructor for creating a new vertical box looks like this:

VBox(bool homogeneous = false,int spacing = 0);

The homogeneous argument controls whether each widget in the box has the same size (i.e., the same width in an horizontal box, or the same height in a vertical box). If it is set to true, the Gtk::Box pack methods function essentially as if the expand argument was always turned on.

What's the difference between spacing (set when the box is created) and padding (set when elements are packed)? Spacing is added between objects, and padding is added on either side of an object. The following figure should make it clearer:

packbox2


Packing Demonstration Program

Here is the code for the packbox that was used to create the above images. I've commented it fairly heavily so I hope you won't have any problems following it. Compile it yourself and play with it.

The header file for packbox is packbox.h:

#include<inti/main.h>
#include <inti/core.h>

using namespace
Inti;

class PackBox : public Gtk::HBox
{
public:
    PackBox(bool homogeneous, int spacing, bool expand, bool fill, unsigned int padding);
    ~PackBox();
};

class PackBoxWindow : public Gtk::Window
{
public:
    PackBoxWindow(int which);
    ~PackBoxWindow();

    void example_1(Gtk::VBox *vbox);
    void example_2(Gtk::VBox *vbox);
    void example_3(Gtk::VBox *vbox);
};

and the source file for packbox is packbox.cc:

#include"packbox.h"
#include <inti/gtk/button.h>
#include <inti/gtk/label.h>
#include <inti/gtk/separator.h>
#include <stdio.h>


// PackBox

PackBox::PackBox(bool homogeneous, int spacing, bool expand, bool fill, unsigned int padding)
: Gtk::HBox(homogeneous, spacing)
{
    // Make a new hbox filled with button-labels. Arguments for the variables we're interested
    // are passed in to this constructor. We do not show the box, but do show everything inside.

    // Create a series of buttons with the appropriate settings
 
   Gtk::Button *button = new Gtk::Button("hbox->pack_start");
    pack_start(*button, expand, fill, padding);
    button->show();

    button = new Gtk::Button("(*button,");
    pack_start(*button, expand, fill, padding);
    button->show();

    // Create a button with the label depending on the value of expand
    if (expand)
        button = new Gtk::Button("true,");
    else
        button = new Gtk::Button("false,");

    pack_start(*button, expand, fill, padding);
    button->show();

    // This is the same as the button creation for "expand" above, but uses the shorthand form.
    button = new Gtk::Button(fill ? "true," : "false,");
    pack_start(*button, expand, fill, padding);
    button->show();

    String s = String::format("%d);", padding);

    button = new Gtk::Button(s);
    pack_start(*button, expand, fill, padding);
    button->show();
}

PackBox::~PackBox()
{
}

// PackBoxWindow

PackBoxWindow::PackBoxWindow(int which)
{
    set_border_width(10);

    // We create a vertical box (vbox) to pack the horizontal boxes into. This allows us to stack
    // the horizontal boxes filled with buttons one on top of the other in this vbox.

    Gtk::VBox *vbox = new Gtk::VBox;

    // Which example to show.
    switch (which)
    {
    case 1:
        example_1(vbox);
        break;

    case 2:
        example_2(vbox);
        break;

    case 3:
        example_3(vbox);
    }

    // Create another new hbox; remember we can use as many as we need!
    Gtk::HBox *quitbox = new Gtk::HBox;

    // Our quit button.
    Gtk::Button *button = new Gtk::Button("Quit");

    // Connect the signal to terminate the program when the button is clicked.
    button->sig_clicked().connect(slot(this, &PackBoxWindow::dispose));

    // Pack the button into the quitbox. The last 3 arguments to Gtk::Box::pack_start are: expand, fill, padding.
    quitbox->pack_start(*button, true, false);

    // pack the quitbox into the vbox (box1)
    vbox->pack_start(*quitbox, false, false);

    // Pack the vbox (box1) which now contains all our widgets, into the main window.
    add(*vbox);

    // And show everything left
    button->show();
    quitbox->show();
    vbox->show();

    // Showing the window last so everything pops up at once.
    show();

}

PackBoxWindow::~PackBoxWindow()
{
}

void
PackBoxWindow::example_1(Gtk::VBox *vbox)
{
    // Create a new label.
    Gtk::Label *label = new Gtk::Label("Gtk::HBox *hbox = new Gtk::HBox(false, 0);");

    // Align the label to the left side.
    label->set_alignment(0, 0);

    // Pack the label into the vertical box (vbox). Remember that widgets added to a vbox
    // will be packed one on top of the other in order.
    vbox->pack_start(*label, false, false);

    // Show the label
    label->show();

    // Create a box - homogeneous = false, spacing = 0, expand = false, fill = false, padding = 0
    PackBox *box = new PackBox(false, 0, false, false, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Call our PackBox constructor - homogeneous = false, spacing = 0, expand = true, fill = false, padding = 0
    box = new PackBox(false, 0, true, false, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(false, 0, true, true, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Creates a separator, we'll learn more about these later, but they are quite simple.
    Gtk::HSeparator *separator = new Gtk::HSeparator;

    // Pack the separator into the vbox. Remember each of these widgets is being packed into a vbox,
    // so they'll be stacked vertically.
    vbox->pack_start(*separator, false, true, 5);
    separator->show();

    // Create another new label, and show it.
    label = new Gtk::Label("Gtk::HBox *hbox = new Gtk::HBox(true, 0);");
    label->set_alignment(0, 0);
    vbox->pack_start(*label, false, false);
    label->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(true, 0, true, false, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(true, 0, true, true, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Another new separator.
    separator = new Gtk::HSeparator;

    // The last 3 arguments to Gtk::Box::pack_start are: expand, fill, padding.
    vbox->pack_start(*separator, false, true, 5);
    separator->show();
}

void
PackBoxWindow::example_2(Gtk::VBox *vbox)
{
    // Create a new label.
    Gtk::Label *label = new Gtk::Label("Gtk::HBox *hbox = new Gtk::HBox(false, 10);");
    label->set_alignment(0, 0);
    vbox->pack_start(*label, false, false);
    label->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    PackBox *box = new PackBox(false, 10, true, false, 0);
    vbox->pack_start(*box, false, false);
    box->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(false, 10, true, true, 0);
    vbox->pack_start(* box, false, false);
    box->show();

    Gtk::HSeparator *separator = new Gtk::HSeparator;
    // The last 3 arguments to Gtk::Box::pack_start are: expand, fill, padding.
    vbox->pack_start(*separator,false, true, 5);
    separator->show();

    label = new Gtk::Label("Gtk::HBox *hbox = new Gtk::HBox(false, 0);");
    label->set_alignment(0, 0);
    vbox->pack_start(*label, false, false);
    label->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(false, 0, true, false, 10);
    vbox->pack_start(*box, false, false);
    box->show();

    // Args are: homogeneous, spacing, expand, fill, padding
    box = new PackBox(false, 0, true, true, 10);
    vbox->pack_start(*box, false, false);
    box->show();

    separator = new Gtk::HSeparator;
    // The last 3 arguments to Gtk::Box::pack_start are: expand, fill, padding.
    vbox->pack_start(*separator,false, true, 5);
    separator->show();
}

void
PackBoxWindow::example_3(Gtk::VBox *vbox)
{
    // This demonstrates the ability to use Gtk::Box::pack_end() to right justify widgets.
    // First, we create a label as before.
    Gtk::Label *label = new Gtk::Label("Gtk::HBox *hbox = new Gtk::HBox(false, 0);");
    label->set_alignment(0, 0);
    vbox->pack_start(*label, false, false);
    label->show();

    // Then we create a new box.
    PackBox *box = new PackBox(false, 0, false, false, 0);

    // Create the label that will be put at the end.
    label = new Gtk::Label("end");

    // Pack it using Gtk::Box::pack_end(), so it is put on the right
    // side of the hbox created in the make_box() call.
    box->pack_end(*label, false, false);

    // Show the label.
    label->show();

    // Pack box into vbox
    vbox->pack_start(*box, false, false);
    box->show();

    // A separator for the bottom.
    Gtk::HSeparator *separator = new Gtk::HSeparator;

    // This explicitly sets the separator to 400 pixels wide by 5 pixels high. This is so the hbox we created
    // will also be 400 pixels wide, and the "end" label will be separated from the other labels in the hbox.
    // Otherwise, all the widgets in the hbox would be packed as close together as possible.
    separator->set_size_request(400, 5);

    // pack the separator into the vbox (box1) created near the start of the constructor
    vbox->pack_start(*separator, false, true, 5);
    separator->show();
}

int main (int argc, char *argv[])
{
    using namespace Main;

    init(&argc, &argv);

    if (argc != 2)
    {
        fprintf (stderr, "usage: packbox num, where num is 1, 2, or 3.\n");
        // This just does cleanup in GTK and exits with an exit status of 1.
        exit (1);
    }

    int which = atoi(argv[1]);

    PackBoxWindow window(which);
    window.sig_destroy().connect(slot(&Inti::Main::quit));

    run();
    return 0;
}




Packing Using Tables

Let's take a look at another way of packing - Tables. These can be extremely useful in certain situations. Using tables, we create a grid that we can place widgets in. The widgets may take up as many spaces as we specify.

The first thing to look at, of course, is the Gtk::Table constructor:

Table(unsigned int rows, unsigned int columns, bool homogeneous = false);

The first argument is the number of rows to make in the table, while the second, obviously, is the number of columns. The homogeneous argument has to do with how the table's boxes are sized. If homogeneous is true, the table boxes are resized to the size of the largest widget in the table. If homogeneous is false, the size of a table boxes is dictated by the tallest widget in its same row, and the widest widget in its column.

The rows and columns are laid out from 0 to n, where n was the number specified in the call to Gtk::Table::Table(). So, if you specify rows = 2 and columns = 2, the layout would look something like this:

 0          1          2
0+----------+----------+
 |          |          |
1+----------+----------+
 |          |          |
2+----------+----------+


Note that the coordinate system starts in the upper left hand corner. To place a widget into a box, use the following method:

void attach(Gtk::Widget& child, unsigned int left_attach, unsigned int right_attach, unsigned int top_attach, unsigned int bottom_attach,
            Gtk::AttachOptionsField xoptions = Gtk::EXPAND | Gtk::FILL, Gtk::AttachOptionsField yoptions = Gtk::EXPAND | Gtk::FILL,
            unsigned int xpadding = 0, unsigned int ypadding = 0);

The first argument child is the widget you wish to place in the table.

The left_attach and right_attach arguments specify where to place the widget, and how many boxes to use. If you want a button in the lower right table entry of our 2x2 table, and want it to fill that entry only, left_attach would be = 1, right_attach = 2, top_attach = 1, bottom_attach = 2. Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'd use left_attach = 0, right_attach = 2, top_attach = 0, bottom_attach = 1.

The xoptions and yoptions are used to specify packing options and may be bitwise OR'd together to allow multiple options. These options are:

Gtk::FILL -
If the table box is larger than the widget, and Gtk::FILL is specified, the widget will expand to use all the room available.
Gtk::SHRINK -
If the table widget was allocated less space then was requested (usually by the user resizing the window), then the widgets would normally just be pushed off the bottom of the window and disappear. If Gtk::SHRINK is specified, the widgets will shrink with the table.
Gtk::EXPAND -
This will cause the table to expand to use up any remaining space in the window.

The default values are Gtk::EXPAND | Gtk::FILL.

The xpadding and ypadding arguments are just like in boxes, creating a clear area around the widget specified in pixels. The default values are both zero.

The  Gtk::Table::set_row_spacing() and Gtk::Table::set_col_spacing() methods place a spacing between the rows at the specified row or column.

void set_row_spacing(unsigned int row, unsigned int spacing);

void set_col_spacing(unsigned int column, unsigned int spacing);


You can also set a consistent spacing of all rows and/or columns with:
 
void set_row_spacings(unsigned int spacing);

void set_col_spacings(unsigned int spacing);

Note that with these calls, the last row and last column do not get any spacing.


Table Packing Example

Here we make a window with three buttons in a 2x2 table. The first two buttons will be placed in the upper row. A third, quit button, is placed in the lower row, spanning both columns. Which means it should look something like this:



The header file for Table is table.h:

#include<inti/main.h>
#include <inti/core.h>


using namespace Inti;

class TableWindow : public Gtk::Window
{
protected:
    void on_button_clicked(const char *text);

public:
    TableWindow();
    ~TableWindow();
};


and the source file is table.cc:

#include"table.h"
#include <inti/gtk/table.h>
#include <inti/gtk/button.h>
#include <inti/bind.h>
#include <iostream>


TableWindow::TableWindow()
{
    // Set the window title
    set_title("Table");

    // Set the border width of the window.
    set_border_width( 20);

    // Create a 2x2 table
    Gtk::Table *table = new Gtk::Table(2, 2, true);

    // Put the table in the main window
    add(*table);

    // Create first button
    Gtk::Button *button = new Gtk::Button("button 1");
   
    // When the button is clicked, we call the "slot" function with a pointer to "button 1" as its argument.
    button->sig_clicked().connect(bind(slot(this, &TableWindow::on_button_clicked), "button 1"));

    // Insert button 1 into the upper left quadrant of the table
    table->attach(*button, 0, 1, 0, 1);

    button->show();

    // Create second button
    button = new Gtk::Button("button 2");

    // When the button is clicked, we call the "slot" function with a pointer to "button 2" as its argument.
    button->sig_clicked().connect(bind(slot(this, &TableWindow::on_button_clicked), "button 2"));

    // Insert button 2 into the upper right quadrant of the table
    table->attach(*button, 1, 2, 0, 1);

    button->show();

    // Create "Quit" button
    button = new Gtk::Button("Quit");

    // When the button is clicked, we call the main window's dispose() function and the program exits.
    button->sig_clicked().connect(slot(this, &TableWindow::dispose));

    // Insert the quit button into the both lower quadrants of the table
    table->attach(*button, 0, 2, 1, 2);

    button->show();
    table->show();
}

TableWindow::~TableWindow()
{
}

void
TableWindow::on_button_clicked(const char *text)
{
    std::cout << "Hello again - " << text << " was pressed" << '\n';
}

int main (int argc, char *argv[])
{
    using namespace Main;

    init(&argc, &argv);

    TableWindow window;
    window.sig_destroy().connect(slot(&Inti::Main::quit));
    window.show();

    run();
    return 0;
}




« Moving On
Index
Top
Widget Overview »